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Statistical Approach to Calculate Thermodynamic
Properties for Propane1

J. Avsec2,3 and K. Watanabe4

The paper describes a mathematical model to compute equilibrium ther-
modynamic properties in the fluid phase of pure hydrocarbons with the
aid of classical thermodynamics and statistical associating chain theories.
In the present paper thermodynamic properties for propane, as an example
of hydrocarbon substances, are calculated. To calculate the thermodynamic
properties of real fluids, models based on the Lennard–Jones intermolecu-
lar potential were applied. To calculate the thermodynamic properties of real
fluids with the aid of classical thermodynamics, Miyamoto–Watanabe (MW)
equations, developed in terms of the Helmholtz energy were used. Analytical
results obtained by statistical thermodynamics are compared with the MW
model and show relatively good agreement.

KEY WORDS: chain theory; propane; SAFT model; statistical thermody-
namics; thermodynamics.

1. INTRODUCTION

In engineering practice, processes occurring in liquid-gas regions are of
vital importance. In order to design devices that operate in these regions,
it is necessary to know the thermodynamic properties in single- and two-
phase systems for pure hydrocarbons and their mixtures.
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Table I. Fundamental Characteristics of Various EOS Based On Classical
Thermodynamics

EOS Number of Constants Influence of Polarity Type

VDW 2 no Pressure
RK 2 no Pressure
PR 3 yes Pressure
BWR 8 no Pressure
BWRSN 16 yes Pressure
MBWR 32 yes Pressure
JS 75–150 yes Helmholtz
TR >200 yes Helmholtz
MW >200 yes Helmholtz

In most cases thermodynamic property tables or diagrams or different
empirical functions obtained from measurements are used (classical ther-
modynamics). Today, there are numerous equations of state (EOS) reported
in the literature for describing the behavior of fluids, e.g., Van der Waals
EOS, Peng–Robinson EOS, Redlich–Kwong EOS, and Soave EOS [1]. How-
ever, these cubic equations exhibit some noticeable problems, such as poor
agreement with experimental data at moderate densities. On the other hand,
we can use complex equations of state with many parameters (Benedict–
Webb–Rubin (BWR) EOS [1], Lee–Kessler EOS [1], Benedict–Webb–Rubin–
Starling–Nishiumi EOS [1], modified BWR EOS [1,2], Jacobsen–Stewart
(JS) EOS [3], Tillner-Roth et al. EOS [4], Miyamoto–Watanabe (MW) EOS
[5,6],. . . etc). The calculation of thermodynamic functions of state with the
aid of classical thermodynamics is well known and is not described in this
paper. Table I shows fundamental characteristics of various EOS obtained
by classical thermodynamics.

Statistical thermodynamics, on the other hand, calculates the proper-
ties of the state on the basis of molecular motion and intramolecular inter-
actions. A good theory for these fluids will be very beneficial to chemical
engineering applications by reducing the number of parameters and mak-
ing them more physically meaningful and more predictable. In technical
practice energy conversion processes are of vital importance. Calculation
of the thermodynamic functions of state is possible by many statistical the-
ories. One of the most successful approaches is perturbation theory. Sev-
eral equations of state have been published that are based on perturbation
theory [7,8]. The evolution of perturbation theory is well described in the
literature by Barker and Henderson [9], Münster [10], Lucas [11], Gray
and Gubbins [12], and McClelland [13].
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In this paper we have developed expressions for models obtained on
the basis of statistical associating fluid theory (SAFT) [14,15] (Tang–Lu
(TL) model [16] and Liu–Li–Lu (LLL) model [17]). These models are
based on the Lennard–Jones intermolecular potential function and the use
of SAFT. The Lennard–Jones intermolecular potential is important for
models for the study of simple fluids in single- and two-phase regions. It
is widely used as a reference potential in perturbation theories for more
complex potentials.

In the present paper we have developed a model for computation
of the equilibrium properties of state. We have compared deviations of
the results between various models for thermodynamic functions of state
and also for their derivatives (enthalpy, pressure, entropy, isothermal com-
pressibility, coefficient of thermal expansion, heat capacities, and speed of
sound).

Results of the analysis are compared with the MW EOS obtained
on the basis of classical thermodynamics and shows relatively good agree-
ment, especially for real gases. Somewhat larger deviations are, however,
found in the liquid region due to the large influence of attractive and
repulsive forces, since the Lennard–Jones potential is an approximation of
the actual real intermolecular potential.

2. COMPUTATION OF THERMODYNAMIC PROPERTIES
OF STATE

To calculate thermodynamic functions of state, we applied the canon-
ical partition function [11]. Utilizing the semi-classical formulation for the
purpose of the canonical ensemble for N indistinguishable molecules, the
partition function Z can be expressed as follows [11]:

Z = 1
N !hNf

∫
..

∫
exp

(
− H

kT

)
·d�r1d�r2..d�rNd�p1d�p2..d�pN (1)

where f stands for the number of degrees of freedom of an individual
molecule, H designates the Hamiltonian of the molecular system, vectors
�r1, �r2..�rN .. describe the positions of N molecules and �p1, �p2... �pN momenta,
k is Boltzmann’s constant, and h is Planck’s constant. The canonical
ensemble of partition functions for the system of N molecules can be
expressed as

Z =Z0ZtransZvibZrotZirZelZnucZconf (2)

Thus, the partition function Z is a product of terms of the ground state
(0), translation (trans), vibration (vib), rotation (rot), internal rotation (ir),
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influence of electrons excitation (el), influence of nuclei excitation (nuc), and
influence of the intermolecular potential energy (conf).

Utilizing the canonical theory for computation, the thermodynamic
functions of state can be defined as follows [10,11]:

Pressure pp =kT
(

∂ ln Z
∂T

)
V

,

Internal energy U =kT 2
(

∂ ln Z
∂T

)
V

,

Helmholtz free energy A=−kT ln Z,

Entrophy S =k
[
ln Z +T

(
∂ ln Z
∂T

)
V

]
,

Gibbs free energy G=−kT
[
ln Z −V

(
∂ ln Z
∂T

)
V

]
,

Enthalphy Hh =kT
[
T

(
∂ ln Z
∂T

)
V

+V
(

∂ ln Z
∂T

)
V

]
,

(3)

where T is the temperature and V is the volume of the molecular system.
Computation of the individual terms of the partition function and

their derivatives except for the configurational integral is dealt with in the
works of Lucas [11], Gray and Gubbins [12], and McClelland [13].

Various derivatives and expressions of the fundamental equations
(Eq. (3)) have important physical significance. This paper presents expres-
sions which are very important for designing energy-conversion processes
[14]. Various derivatives also prove to be of physical interest:

Coefficient of thermal expansion :βt = 1
V

(
∂V

∂T

)
p

. (4)

Isothermal compressibility :χ = − 1
V

(
∂V

∂p

)
T

. (5)

Isochoric molar heat capacity :Cν =
(

∂U

∂T

)
V

. (6)

Isobaric molar heat capacity :Cp =
(

∂H

∂T

)
p

=Cν + T Vβ2

χ
. (7)

Speed of sound : c0 =
√

−V 2 1
M

(
∂p

∂V

)
s

=

√√√√√−V 2

Cp

T

(
∂T
∂V

)
p

1
M(

∂V
∂T

)
p

− Cp

T

(
∂T
∂p

)
V

, (8)

where M is the molar mass.
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3. STATISTICAL ASSOCIATING FLUID THEORY (SAFT)

Over the last 50 years, accurate models on the basis of statistical ther-
modynamics have been developed for predicting the thermodynamic prop-
erties for simple molecules [15–40]. By simple we mean molecules for which
the most important intermolecular forces are repulsive and dispersive with
weak electrostatic forces due to dipoles, quadrupoles, and higher multipole
moments. Many hydrocarbons, natural constituents, and simple organic and
inorganic molecules fall within this category. But a lot of other components,
such as electrolytes, polar solvents, hydrogen-bonded fluids, polymers, liq-
uid crystals, plasmas, and particularly mixtures, do not fall into this group.
The reason for this is that, for such fluids, important new intermolecular
forces play essential roles: Coulombic forces, strong polar forces, complex-
ing forces, the effects of association and chain formation, etc.

An important group of these complex fluids consists of those that
associate to form relatively long-lived dimers or higher n-mers. This type
of fluid exhibits hydrogen bonding, and charge transfer of other types can
occur. The intermolecular forces involved are stronger than those due to
dispersion or weak electrostatic interactions but still weaker than forces
due to chemical bonds.

In recent years thermodynamic theories based on statistical thermo-
dynamics have been widely developed. Fluids with chain bonding [15–40]
and association have received much attention. Interest in these fluids have
been prompted by the fact that they cover a much wider range of real flu-
ids than for spherical systems [15]. In Ref. 15 is explained in detail the
advantage of SAFT models in comparison with classical statistical mod-
els over all fluid regions.

To calculate the thermodynamic properties of real Lennard–Jones (LJ)
fluids, the LLL (revised Cotterman) equation of state based on simple per-
turbation theory and the SAFT-VR equation of state for LJ chain fluids,
the complex TL analytical model with a new radial distribution function
(RDF) based on simplified exponential approximation (SEXP) and per-
turbation expansion, were applied. The developed RDF has been applied
to the development of a new SAFT model. The present model has been
used to calculate several typical properties of LJ chains and associating LJ
chains. This paper, for the first time, discusses the accuracy of these mod-
els to be used in real engineering practice.

The original derivation of SAFT models is shown in Wertheim papers
[32–35]. They require a comprehensive knowledge of graph theory to be
fully understood;

Ares =Aseg +Achain +Aassoc (9)
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The residual Helmholtz energy consists of three terms representing con-
tributions from different intermolecular forces. The first term Aseg repre-
sents segment–segment interactions. In the present paper segment–segment
interactions are represented through the Lennard–Jones interaction poten-
tial. Each segment is characterized by its diameter σs and segment inter-
action parameter εs , and each molecule is characterized with the number
of segments, m. The second term Achain represents the presence of cova-
lent chain-forming bonds between the LJ segments. The third term Aassoc

is the result of site–site interactions between segments, for example, hydro-
gen bonding. For the hydrocarbons the association term is of no signifi-
cance and will be neglected in our equations.

Ares = Aseg (m,ρ, T , σs, εs)+Achain (ρ, d,m)+Aassoc
(
ρ,T , d, εAB, κAB

)
(10)

where ρ is the molar density, T is the temperature, εAB is the association
energy between two sites, and κAB is the volume interaction between two
sites.

3.1. Liu–Li–Lu Model [17]

The present model is developed on the basis of SAFT and perturba-
tion theory around hard spheres with new coefficients by fitting reduced
pressure and internal energy data from molecular simulation.

Aseg = Ahs +Apert (11)
Ahs

RmT
= m

4η−3η2

(1−η)2
, Apert =m

A(1)

T ∗ +m
A(2)

T ∗2
(12)

A(1)

RmT
=

4∑
m=1

A1m

(η

τ

)m

,
A(2)

RmT
=

4∑
m=1

A2m

(η

τ

)m

, (13)

τ = 0.7405, η= πρd3
s

6
m, (14)

The effective segment diameter ds is determined on the basis of Barker
perturbation theory. We use a function developed in the work of Chen
et al. [27]:

ds = 1+0.2977T ∗

1+0.33163T ∗ +0.0010477+0.025337m−1
m

(15)
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where

T ∗ = kT

ε
is the reduced temperature. (16)

According to Wertheim’s first-order thermodynamic perturbation theory
[32–35], the contribution to free energy due to chain formation of the LJ
system is expressed as

Achain

NkT
= (1−m) ln gLJ (σ ) (17)

Johnson et al. [20] gave a correlated result of the RDF for LJ fluids depen-
dent on the reduced temperature and reduced density:

gLJ (σs)=1+
5∑

i=1

5∑
j=1

aij

(
ρ∗)i (

T ∗)1−j (18)

With the use of the configurational free energy, we can calculate all con-
figurational thermodynamic properties. We used derivations of all other
expressions for calculation of thermophysical properties.

3.2. Tang–Lu Model [16]

The TL model uses as the intermolecular potential a new two-
Yukawa potential function. This function is found to mimic very closely
the Lennard–Jones potential. The TL analytical model calculates ther-
modynamic functions of state on the basis of a solution of the Orn-
stein–Zernike equation with the help of perturbation and SAFT theory.
Comparisons with computer simulation data indicate that the expressions
developed yield better results (pressure, internal energy, free energy) than
classical statistical thermodynamics theory. The configurational segment
free energy is given by

Aseg

NkT
=m(a0 +a1 +a2), (19)

where a0 represents the reduced Helmholtz energy of the hard-sphere
fluid, and a1 and a2 are perturbed first- and second-order parts as given
below:

a0 = 4η−3η2

(1−η)2
, (20)
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a1 = −12ηβε

D3




k1

[
L(z1D)

z2
1 (1−η)2 Q(z1D)

− 1+ z1

z2
1

]

− k2

[
L(z2D)

z2
2 (1−η)2 Q(z2D)

− 1+ z2

z2
2

]




+48ηβε

[
1
9

( σ

D

)12 − 1
3

( σ

D

)6
]

(21)

−8ηβεg0

[
1
9

( σ

D

)12 − 1
3

( σ

D

)6 + 2
9

( σ

D

)3
]

a2 = −6ηβ2ε2

D3




k2
1

2z1Q
4 (z1D)

− k2
2

2z2Q
4 (z2D)

− 2k1k2

(z1 + z2)Q2 (z1D)Q2 (z2D)




−24ηβ2ε2
[

k1/D

Q2 (z1D)
− k2/D

Q2 (z2D)

]
(22)

×
[

1
9

( σ

D

)12 − 1
3

( σ

D

)6 + 2
9

( σ

D

)3
]

k1 =k0 exp [z1 (σ −D)] , k2 =k0 exp [z2 (σ −D)] ,

Q(t)= S(t)+12ηL(t) exp [−t ]

(1−η)3 t3
, (23)

S(t)= (1−η)2 t3 +6η (1−η) t2 +18η2t −12η (1+2η) , (24)

g0 = 1+η/2

(1−η)2
,L(t)=

(
1+ η

2

)
t +1+2η,β = 1

kT
, (25)

k0 =2.1714σ, z1 =2.9637/σ, z2 =14.0167/σ. (26)

η= πρd3
s

6
m (27)

In Eqs. (21) and (22), β is the Boltzmann factor. In the present paper we
used a SEXP of the RDF. This function is obtained analytically with a
first-order solution of the mean spherical approximation of the RDF and
improved by the SEXP [16].

gSEXP(r)=g0(r) exp (g1(r)) (28)

Due to the very complex structure of Eq. (28) and almost the same behav-
ior as Eq. (18), we have developed the needed derivatives for the RDF
with the help of Eq. (18).
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The contribution to free energy due to chain formation is calculated
with the same model as presented in Eq. (17).

4. CLASSICAL THERMODYNAMICS MW MODEL

For the purpose of comparison of the present statistical model with
available analytical models, we have selected thermodynamic models for
hydrocarbons recently published by Miyamoto and Watanabe [5,6] which
cover a wide range of temperatures and pressures. For propane the model
covers the range from the triple point temperature (85.48 K) to 623 K, at
pressures up to 103 MPa and densities up to 741 kg·m−3. The MW model
is one of the most accurate models for calculation of equilibrium ther-
modynamic properties for propane in the gaseous and liquid states. The
absolute deviations of experimental thermodynamic property data from
the analytical model are mostly within ±1% in pressure. The MW equa-
tions of state for pure hydrocarbons are given in terms of the dimension-
less Helmholtz free energy,

A

RmT
= Aig

RmT
+ Ar

RmT
(29)

In Eq. (29) Aig represents the free-energy ideal-gas function, and Ar repre-
sents the residual part, which corrects the ideal-gas part to real-fluid behav-
ior. T represents the temperature, and Rm is the universal gas constant. The
general structures of the ideal-gas and residual parts are written as

Aig

RmT
= ln δ +a0

1 +a0
2τ +a0

3 ln τ +
10∑
i=4

aiτ
ni

+
16∑

i=11

ai ln (1− exp (−niτ )) ,

(
δ = Vc

V
, τ = Tc

T

)
(30)

The coefficients δ and τ represent inverse reduced volume and inverse
reduced temperature, respectively:

Ar

RmT
=

15∑
i=1

aiτ
ti δdi +

45∑
i=16

aiτ
ti δdi exp(−δci)

+
60∑

i=46

aiτ
ti δdi exp

(
−αi (δ −νi)

2 −βi (τ −γi)
2
)

(31)

The equations of state for different hydrocarbons require the use of differ-
ent coefficients ai and different exponents ti , di , ei , αi , and βi .
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Table II. Important Constants for Analytical
Calculation

propane

σ,σs (m) 3.77×10−10

εs (J) 3.20×10−21

m (-) 1.85
M (kg/kmol) 44.08
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Fig. 1. Deviations of the vapor pressure results from the models of this study and the
MW model for propane.

5. RESULTS AND COMPARISONS WITH MW MODEL

The constants necessary for computation such as the characteristic
rotation-, electronic-, etc. temperatures are obtained from data [10–12].
The vibration constants are obtained from the NIST Chemistry Web Book
page. The inertia moments are obtained analytically by applying a knowl-
edge of the atomic structure of the molecule. We carried out calculations
for propane (C3H8). The most important data for calculation are pre-
sented in Table II. Comparison of our calculations with the MW model
are presented in Figs. 1–6.

Figures 1–6 show the relative deviations of the results for propane
and in the saturated-gas region between the analytical computations (LLL
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Fig. 2. Deviations of the isochoric molar heat capacity results from the models of this
study and the MW model for propane.
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Fig. 3. Deviations of the isobaric molar heat capacity results from the models of this
study and the MW model for propane.

and TL), and the MW model obtained by classical thermodynamics. The
relative deviations are defined as follows:

Relative deviation(RD)= (dataST −dataMW)/dataMW (32)
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Fig. 4. Deviations of the speed of sound results from the models of this study and the
MW model for propane.
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Fig. 5. Deviations of the volumetric coefficient of expansion results from the models of
this study and the MW model for propane.

The results for all the models obtained by statistical thermodynamics show
relatively good agreement. The computed vapor pressure, isothermal com-
pressibility, molar isobaric heat capacity, and speed of sound were in rel-
atively good agreement for all models, obtained by associating statistical
thermodynamics. Somewhat larger deviations can be found in the region
near the critical point due to the large effect of fluctuation theory (Pelt
and Sengers [41]) and the singular behavior of some thermodynamic
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Fig. 6. Deviations of the isothermal compressibility results from the models of this study
and the MW model for propane.

properties in the near-critical region. The perturbation models on the basis
of SAFT theory (TL and LLL) yield surprisingly good results. The models
on the basis of SAFT theory give better results in comparison with models
on the basis of classical statistical thermodynamics, especially in high-tem-
perature and high-pressure regions. The present model yields very good
results as a whole, particularly the high-temperature range. The results of
the complex TL model are much better than those of the LLL model.

Figures 7–11 show comparisons between TL and MW models for
speed of sound, molar isochoric heat capacity, molar isobaric heat capac-
ity, isothermal compressibility, and volumetric coefficient of expansion.
The figures are displayed for propane for the real gas and liquid phases
over extensive temperature (200–600 K) and pressure (1–50 bar) ranges. A
detailed analysis of relative deviations of the TL model shows the high-
est relative deviations near the critical pressure and temperature where the
presented model does not take into account the fluctuation theory of the
critical point. The present analytical model yields very good results with
much lower deviations at all other points. The analysis shows that mul-
tipole effects must be taken into account for the areas of very low com-
pressibility factors in the liquid phase [14] so as to expect full matching
of results, even though the matching is even now very satisfactory.

The present analysis provides a good basis for further upgrading
of this model allowing the calculation of very accurate thermodynamic
properties of state in liquid and gas phases as well as in super- and sub-
critical regions.
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Fig. 7. Deviations of the speed of sound for propane in the fluid region obtained with
the TL model compared with the MW model.
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Fig. 8. Deviations of the isochoric molar heat capacity for propane in the fluid region
obtained with the TL model compared with the MW model.
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Fig. 9. Deviations of the isobaric molar heat capacity for propane in the fluid region
obtained with the TL model compared with the MW model.
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Fig. 10. Deviations of the volumetric coefficient of expansion for propane in the fluid
region obtained with the TL model compared with the MW model.
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Fig. 11. Deviations of the isothermal compressibility for propane in the fluid region
obtained with the TL model compared with the MW model.

NOMENCLATURE

A Helmholtz free energy
a reduced Helmholtz energy
BWR Benedict–Webb–Rubin
c0 speed of sound
Cp isobaric molar heat capacity
CV isochoric molar heat capacity
f number of degrees of freedom
G Gibbs free enthalpy
g0 hard-sphere radial distribution function
EOS equation of state
H Hamiltonian
Hh enthalpy
k Boltzmann constant
LLL Liu–Li–Lu
m number of segments
M molar mass
MW Miyamoto–Watanabe
N number of molecules in system
p momentum
pp pressure
Rm universal gas constant
S entropy
SAFT statistical associating fluid theory
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SEXP simplified exponential approximation
ST statistical thermodynamics
T temperature
T ∗ reduced temperature
TL Tang-Lu
r intermolecular distance
U internal energy
v specific volume
V volume
Z partition function
β Boltzmann factor
βt coefficient of thermal expansion
δ inverse reduced volume
εs segment interaction parameter
εAB association energy between two sites
η packing factor
θ characteristic temperature
κAB volume of interaction between two sites
ρ density
ρ∗ reduced density
χ isothermal compressibility
σs segment diameter

Superscripts and Subscripts

0 ground state
assoc association
c critical state
chain chain
conf configurational
el influence of electron excitation
ir internal rotation
nuc influence of nuclear excitation
pot potential energy
res residual
rot rotation
seg segment
trans translation
vib vibration
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